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Abstract

We present a first principles study of the equilibrium structures and relative thermodynamic stability of the three observed polymorphs

of rhodium(III) sesquioxide. The thermodynamic Gibbs free energies for each phase are calculated as a function of P and T based on the

electronic total energy, as well as vibrational energy and vibrational entropy contributions in the local harmonic (LH) approximation.

The results confirm that Rh2O3 I is a low-temperature, low-pressure form and Rh2O3 II is a high-pressure form. A breakdown in the LH

approximation at high T is then discussed and to address this breakdown an empirically corrected local harmonic (ECLH)

approximation is introduced. ECLH demonstrates that the high-temperature, low-pressure form Rh2O3 III is entropically stabilized and

produces a partitioning of phase space that is consistent with published experimental investigations.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Rhodium as a metal has been used both in catalysts and
electrochemical applications [1]. Rhodium supported on
alumina has been the subject of numerous investigations
because it is used in automotive catalytic converters to
promote the reduction of NO [2–5]. In these cases, rhodium
undertakes various redox reactions and consequently the
role of rhodium is closely related to the formation of
different polymorphs of Rh(III) oxide in different tem-
perature ranges. Studies have shown that rhodium sesqui-
oxides also exhibit the electrical and magnetic properties of
a semiconductor [6,7]. Therefore, knowledge of the
formation of Rh(III) oxide polymorphs, their structures
and relative thermodynamic stability is important for
understanding the nature of catalytic and electronic
systems.

Several published experimental studies provide evidence
for the existence of three polymorphs of Rh2O3. These are:
the corundum form Rh2O3 I (space group R–3c) [8,9]
e front matter r 2006 Elsevier Inc. All rights reserved.
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described as the low-temperature, low-pressure form and
two other corundum-related orthorhombic structures; the
high-temperature, high-pressure form Rh2O3 II (space
group Pbna) [10] and the high-temperature, low-pressure
form Rh2O3 III (space group Pbca) [11–13]. So far,
however, beyond these broad categorizations, the relative
stabilities of the three phases are still unclear, and the P–T

phase diagram for the three rhodium sesquioxide phases is
basically unknown. To our knowledge, no theoretical work
on phase transitions of the Rh(III) oxides has been
reported in the literature.
In recent years, first-principles studies have been

successfully used for predicting relatively complex solid-
state phase diagrams for binary alloys by including the
effects of lattice vibrations at finite temperatures [14,15].
The treatment of ionic solids is more rare [16]. First-
principles techniques have also found application in the
study of minerals that occur deep within the Earth’s
mantle, where pressures and temperatures exist that are not
easily replicated in the laboratory [17,18]. In the present
case, since characterization of the transitions to the high-
pressure phase has not yet been assessed with experiments,
first-principles theoretical studies can be of great help in
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understanding the relative stability of the three phases of
rhodium sesquioxide over a range of temperatures and
pressures [19].

In this paper, we investigate the relative thermodynamic
stability of the three phases of Rh(III) oxide based on first-
principles calculations including the contribution of lattice
vibrations. The most elegant approach to including the
effects of vibrations is to perform a numerically exact
calculation of the phonon density of states (DOS) using
linear-response theory [20–24]. Representative applications
to ionic solids include Refs. [25–27]. Another numerically
intensive technique is to apply quasiclassical lattice
dynamics (QLD), which has been used to study SiO2 at
high pressures and temperatures [17]. In the present case, to
construct the phase diagram, Gibbs free energies are
computed from electronic total energies based on density-
functional theory calculations (DFT) [28] and vibrational
contributions to the free energy using the local harmonic
(a.k.a. LH or Einstein-like) approximation [29,30]. The LH
model is a very efficient technique for calculating free
energies of solids [29,30]. It is especially useful when an
exact calculation of the vibrational DOS is impractical or
impossible. The LH approximation improves on the
Einstein model in that the atomic vibrations are aniso-
tropic and are explicitly dependent on the chemical
environment. The LH approximation succeeds where the
simple Debye model fails, and gives an exact prediction of
the second moment of the vibrational DOS [29,30].
Vibrational frequencies for the LH model are from
numerical second derivatives of the first-principles total
energies with respect to spatial displacements of the atoms.
To address certain shortcomings of the LH approximation
at high T, an empirically corrected local harmonic (ECLH)
approximation is introduced along with supporting analy-
sis of the breakdown of the LH approximation at high T.

2. Theoretical methods

To construct the phase diagram for the three Rh2O3

phases, we calculate the Gibbs free energies,

GðT ;PÞ ¼ F ðT ;V Þ þ PV (1)

of each phase for different pressures and temperatures. The
Helmholtz free energy F is calculated by

F ðT ;V Þ ¼ EeðV Þ þ EvibðT ;V Þ � TSvib. (2)

Here Ee(V) is the electronic total energy, and Evib and
Svib are vibrational energy (including the zero-point
energy) and vibrational entropy, respectively.

The theoretical calculations of the total energy Ee(V) are
based on density functional theory [28] employing
the PW91 generalized gradient approximation (GGA) to
the exchange-correlation energy [31,32], as described in the
review by Payne et al. and coded in the Cambridge serial
total energy package (CASTEP) [32]. The electron–ion
interactions were described by the ultrasoft pseudopoten-
tials of Vanderbilt [33]. We used a plane wave basis set with
a cutoff energy 380 eV to construct the (valence) electronic
wave functions. Here the valence consisted of oxygen 2s

and 2p and Rh 5s and 4d. Integrations over the Brillouin
zone employed a grid of k-points with a spacing of 0.1/Å
chosen according to the Monkhorst–Pack scheme [34].
Convergence tests, as well as published work reporting
plane-wave pseudopotential calculations on wide band-gap
metal oxides, suggests that the total energy differences are
converged with respect to the number of plane waves and
k-point spacing to ca. 50–100meV [35,36], and structural
data to o1% [37,38].
To calculate the Evib term, we have refined the Einstein

model. In the Einstein model [39], the vibrational lattice
energy Evib(T, V) of a pure metal is expressed in terms of a
characteristic atomic local mode vibrational frequency v as

EvibðT ;V Þ ¼ ð3=2Þhvþ 3hv=ðexpððhvÞ=ðkTÞÞ � 1Þ, (3)

where h and k are the Plank and Boltzmann constants,
respectively. For multi-element solid phase Rh2nO3n, we
approximate Evib(T,V) by a modified Einstein model as
follows:

Evib ¼ 2n
X

i¼1...3

hvi�Rhð1=2þ 1=ðexpðhvi�Rh=kTÞ � 1ÞÞ

þ 2
X

i¼1...3

hvi�Oað1=2þ 1=ðexpðhvi�Oa=kTÞ � 1ÞÞ

þ n
X

i¼1...3

hvi�Obð1=2þ 1=ðexpðhvi�Ob=kTÞ � 1ÞÞ, ð4Þ

where vi-Rh are the local mode vibrational frequencies for
Rh and vi-Oa and vi-Ob are the vibrational frequencies for
two types of oxygen atoms. The vibrational frequencies are
computed in the harmonic approximation by diagonalizing
the mass-weighted Cartesian force constant matrix for each
symmetry unique atom in the primitive unit cell [40]. The
Cartesian force constants are approximated by computing
divided-difference numerical second derivatives of the
electronic total energy (step size 0.01 Å).
Assuming that the crystal structure can be reasonably

treated as a collection of harmonic oscillators, the
vibrational entropy contribution Svib can be expressed as
[41,42]

Svib ¼ � 2nk
X

i¼1...3

ln½1� expð�hvi�Rh=kT Þ�
�

� ðhvi�Rh=kTÞ½expðhvi�Rh=kTÞ � 1��1
�

� 2nk
X

i¼1...3

ln½1� expð�hvi�Oa=kTÞ�
�

� ðhvi�Oa=kTÞ½expðhvi�Oa=kTÞ � 1��1
�

� nk
X

i¼1...3

ln ½1� expð�hvi�Ob=kT Þ�
�

� ðhvi�O=kTÞ½expðhvi�Ob=kTÞ � 1��1
�
. ð5Þ

The dependence of total energy on volume was found by
interpolation from a fourth degree polynomial fit to the
DFT-calculated points on Ee(V) for all V less than or equal
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Fig. 1. Unit cell structures of the Rh2O3 I, II and III phases.

Red ¼ oxygen and yellow ¼ rhodium.
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to the minimum energy volume. The isothermal dependen-
cies P(V) were calculated by direct differentiation of the
energy, P ¼ �ðdE=dV ÞT, for each structure. In this way, a
specific pressure was related to a total energy, which was
then used for Ee at that P for all T. Applying Eqs. (4) and
(5) to Eqs. (1) and (2), Gibbs free energies for each phase
can be obtained and used for constructing the phase
diagram. To construct the phase diagram we recognize that
at those points (P, T), where the difference between the
Gibbs free energies of two phases is zero, both phases
coexist. These points fall on curves of intersection between
the free energy surfaces in the space where P and T are the
independent variables.

It should be noted that the contribution of configura-
tional entropy to the free energy is not included in Eq. (1).
We assume that the configurational entropy of the Rh(III)
oxide systems is mainly from the presence of oxygen
vacancies. (The oxygen vacancy formation energy is lower
than that of a rhodium vacancy.) We estimated the change
in configurational entropy DSconf introduced by the
formation of an oxygen vacancy by [14,43]

DSconf ¼ kðX v ln X v þ ð1� X vÞ ln ð1� X vÞÞ, (6)

where Xv is the vacancy concentration, which was in turn
determined from first-principles total energy calculations of
the vacancy formation energy DEvac using Boltzmann
statistics [43]. Based on the calculated oxygen vacancy
formation energies for the three Rh2O3 phases (see
Table 1), it was concluded that the configurational entropy
differences between each pair of phases are sufficiently
small to be justifiably neglected in constructing the phase
diagram.
Table 1

Calculated structural parameters and minimum energies of Rh2O3 I–III

Lattice parameters V (Å3)

Theo. (Å) Exp. (Å)

Rh2O3 I a ¼ 5:601 a ¼ 5:47a (a ¼ 5:485b) 111.38

(R�3c) a ¼ 55:541 a ¼ 55:67a (a ¼ 55:73b) (445.52)

(Z ¼ 2)

Rh2O3 II a ¼ 5:257 5.1686c 212.69

(Pbna) b ¼ 5:481 5.3814c (425.38)

(Z ¼ 4) c ¼ 7:382 7.2426c

Rh2O3 III a ¼ 5:236 5.149d (5.1477e, 5.146f) 435.70

(Pbca) b ¼ 5:538 5.436d (5.4425e, 5.440f)

(Z ¼ 8) c ¼ 14:994 14.688d (14.6977e, 14.71f)

Energies are given in eV per Rh16O24 unit. (The Z ¼ 8 supercell volume is given

from the sources cited.)
aFrom Ref. [8].
bFrom Ref. [9].
cFrom Ref. [10].
dFrom Ref. [11].
eFrom Ref. [12].
fFrom Ref. [6].
3. Results and discussion

The results of our calculations, including structural data
and minimum total energies for Rh2O3 I, Rh2O3 II and
Rh2O3 III are summarized in Table 1, along with published
experimental results. The structures of these three forms
are shown in Fig. 1.
That Rh2O3 I has the corundum structure was first

determined by Lunde [8], whose lattice parameter data is
included in Table 1, along with improved values reported
by Coey [9]. Shannon and Prewitt [10] first reported the
Density (g/cm3) Ee (eV) Ee+Evib (eV) DEvac (eV)

7.57 �20,277.30 �20,261.03 3.4

7.93 �20,277.07 �20,260.77 3.3

(8.26d)

7.76 �20,277.18 �20,260.48 3.6

(8.06d)

in parenthesis in the column labeled ‘‘V’’. Other values in parenthesis are
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Fig. 2. Energy versus volume curves of the Rh2O3 I, II and III phases.

Fig. 3. Phase diagram for Rh(III) oxides from first-principles in the LH

approximation. The three placements of the phase boundary show its

sensitivity with respect to variation of the computed local-mode

vibrational frequencies. The solid curve is recommended.
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synthesis and characterization of Rh2O3 II, an orthorhom-
bic corundum-related form. Rh2O3 III also has an
orthorhombic structure. Lattice parameters by Wold et
al. [11], Biesterbos and Hornstra [12], and Leiva et al. [6]
are collected in Table 1.

It has been suggested that Rh2O3 III is in some respects
an intermediate form between the other two types [13].
Comparing both the present results and the previous
experimental results given in Table 1, it is interesting to
note that the material density of Rh2O3 III is indeed
‘‘intermediate’’ between Rh2O3 I and Rh2O3 II. The
variation in the total energy with volume for each of the
three phases is shown in Fig. 2. Rh2O3 III also shows this
‘‘intermediate’’ property in the Ee(V) curves.

3.1. Total energy as a function of volume for the three

Rh2O3 phases at T ¼ 0K

From the total energy curves it can be seen that the three
phases have very similar total energies at their minima.
Rh2O3 I has the lowest total energy minimum. The minima
of the total energies for the Rh2O3 II and Rh2O3 III
structures lie 0.23 and 0.12 eV above that of Rh2O3 I (per
Rh16O24 unit). These energy differences are very small and
are near the limit of accuracy of the total energy
calculations so that no definitive conclusion can be
drawn from the calculated relative order in energy,
Ee(Rh2O3 I)oEe(Rh2O3 III)oEe(Rh2O3 II). Lending
credibility to the observed energetic preference for Rh2O3

I, however, we found that when Ee is corrected for zero-
point vibrational energy (Ez ¼ Ee þ EvibðT ¼ 0Þ) Rh2O3 I
is still the most stable phase at 0K (see Table 1).

The total energy curves shown in Fig. 2 suggest that
Rh2O3 undergoes a series of structural phase transitions
under increasing pressure. The sequence of the structural
phase transitions is: Rh2O3 I-Rh2O3 III-Rh2O3 II. We
may use the total energy curves in Fig. 2 obtained by DFT
calculations to estimate the zero-temperature phase transi-
tion pressures. According to the equation P ¼ �ðdE=dV ÞT,
the transition pressures are 1.8 and 2.6GPa for Rh2O3 I-
Rh2O3 III and Rh2O3 III-Rh2O3 II, respectively. For the
direct phase transition from Rh2O3 I to Rh2O3 II at 0K,
the transition pressure is 2.2GPa. These are coarse
theoretical estimates because they neglect ZPE, but it
seems reasonable to conclude that there is at most a small
pressure range for the existence of Rh2O3 III at low T. No
other experimental or theoretical results are available for
comparison with these estimates of the transition pressure
at 0K, but we refine our analysis in the following sections.

3.2. P–T phase diagram in the LH approximation

In order to consider the phase transitions at finite
temperatures, it is necessary to consider the vibrational
contributions to the free energy in evaluating the relative
stability of each pair of phases. Lattice vibrations can have
significant influence on predictions of phase stability
[14,30]. To construct the phase diagram, the thermodyna-
mical Gibbs potentials G(P,T), including the vibrational
entropy contribution, were calculated according to Eq. (1)
and then compared for the three phases on a fixed mesh of
independent parameters (P, T).
To construct the P–T diagram we have first applied the

LH model for vibrational contributions to the free energy.
For a given crystal structure at a volume V, one can
determine the vibrational frequencies in the LH approx-
imation vi by diagonalizing the local dynamical matrix for
each independent atom in the unit cell (i.e. by diagonalizing
the 3� 3 block-diagonal approximation to the force
constant matrix F). These local-mode frequencies, inserted
into Eqs. (4) and (5), yield the Evib and Svib terms, which
enter into the thermodynamic quantities F(T,V) and
G(T,P). By comparing the relative values of G(T,P) for
the three Rh2O3 phases, the P–T phase diagram is
constructed and presented in Fig. 3.
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Fig. 4. The temperature dependence of the Gibbs energy at P ¼ 1:0GPa.
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Fig. 3 shows three placements of the Rh2O3 I/II phase
boundary calculated using the LH approximation. First,
we computed the local-mode vibrational frequencies for the
Rh and O atoms at the minimum-energy volume for each
of three Rh2O3 phases and assumed these frequencies to be
volume independent. This produced the phase boundary
indicated by the white dashed line in the black area (V-i in
Fig. 3). Next, to obtain the volume dependence of the
vibrational frequencies, we computed the vibrational
frequencies explicitly from first principles at several
volumes and derived a linear dependence for each vi(V)
based on least-squares fitting. These volume-dependent
frequencies produced the solid line dividing the black and
red regions in the P–T phase diagram (V-d1 in Fig. 3).
Third, to further estimate the sensitivity of the P–T

diagram to the computed frequencies we excluded those
vibrations exhibiting the greatest deviations from a linear
volume dependence (Rh2O3 II data at the volume display-
ing the most negative deviation; Rh2O3 III data at the
volume displaying the most positive deviation) and
obtained the phase boundary depicted by the black dashed
line in the red region (V-d2 in Fig. 3). The sensitivity of the
phase boundaries to the frequencies is thereby exhibited in
the P–T phase diagram. It is notable that all three of these
calculations give a similar shape of the stability region for
Rh2O3 I. They do not, however, produce a region of
stability for the Rh2O3 III form in the entire P–T range
shown for reasons discussed in Section 3.3. In the
remainder of this subsection, our ‘‘recommended’’ results,
denoted by the solid line in Fig. 3, are used.

There is also likely to be some error in the vibrational
frequencies arising from the choice of the GGA functional.
The mean absolute relative error in the lattice parameters is
1.9%, so we can expect errors of at least this magnitude in
the computed frequencies. Errors of this magnitude are
minor on the scale of the sensitivity analysis presented in
the previous paragraph, and are well below the anticipated
error due to neglecting anharmonicity in the vibrations
(ca. 5%), suggesting that GGA is adequate.

From the phase boundary between Rh2O3 I and II in
Fig. 3, it is clear that the transition between Rh2O3 I and
Rh2O3 II occurs in the temperature range To1630K and
the pressure range 0.0–3.27GPa, which is consistent with
experimental observations that Rh2O3 II has been obtained
by heating rhodium oxide at 1200–1500 1C under 65 kbar
(6.5GPa) pressure [6,10]. (Since the experimental condition
was in air, only qualitative comparison is possible.) Fig. 4
focuses on a representative point of intersection between
the free energy surfaces for the Rh2O3 phases at
P ¼ 1:0GPa, which shows that over the range 0oTo
1270K, the Gibbs free energy is lowest in the Rh2O3 I
phase; while for T41270K, the Rh2O3 II phase becomes
preferred. The point of the intersection of the curves lies on
the phase boundary between Rh2O3 I and Rh2O3 II of the
P–T diagram in Fig. 3. The P–T diagram shows, in
agreement with experimental results, that Rh2O3 I is the
low-temperature, low-pressure form, while Rh2O3 II is the
high-pressure form. In the LH approximation, however,
the Rh2O3 III form is never thermodynamically favored in
the region of P, T space studied here.

3.3. P–T phase diagram in the ECLH approximation

In this section, we explore why the LH approximation
fails to produce a region of stability for the Rh2O3 III
phase. As has been pointed out [30], the LH approximation
neglects coupling off the 3� 3 diagonal block of the force
constant matrix F. This approximation has little impact on
high frequency vibrations. High frequency phonon modes
generally result from local oscillations of single atoms.
(Nominally frequency is proportional to mass�1/2 so that
the highest frequencies correspond to moving the smallest
possible masses, i.e. individual atoms.) Since these high
frequency modes are weakly coupled, they are adequately
approximated using only the 3� 3 block-diagonal (LH)
approximation to F. They are also accurately captured
when a small unit cell is used to model the material. The
major contribution to the vibrational energy Evib comes
from the intermediate and high frequencies of the phonon
spectrum [30] and high frequency vibrations dominate the
zero-point-energy (ZPE) term. Calculations of the free
energy G based on small unit cells and the LH approxima-
tion are therefore expected to be reliable at low T where
TSvib � 0 and EvibEZPE. At high T, however, TSvib is
appreciable and this term is dominated by low frequency
vibrations. (Very-low, i.e. near-zero, frequency vibrations
carry so little energy that they are of little consequence
except at temperatures not customarily relevant.) Low
frequencies arise from groups of atoms oscillating together,
and such oscillations are not captured by a small unit cell.
In addition, since low frequency modes involve the
interaction of multiple atoms, they are not accurately
modeled with the LH approximation. From the preceding
discussion we can conclude that the P–T phase diagram
based on the LH approximation will not be reliable at
high T.
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Fig. 5. Phase diagram for Rh(III) oxides in the ECLH approximation.

Note that the phase boundary for the Rh2O3 I-Rh2O3 II transformation

is in good agreement with that predicted with the LH approximation. The

empirical correction introduces a region of stability for the Rh2O3 III form

at high T and low P, in agreement with published experimental results;

although we suggest that the diagram should be accepted as semi-

quantitative for reasons discussed in the text.
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To accurately capture low-frequency oscillations, we
must avoid small unit cells and avoid the LH approxima-
tion. Let us estimate the computational expense of going
beyond the LH approximation within the present theore-
tical framework: to obtain the vibrational frequencies we
must diagonalize the force constant matrix F. Each element
of F is proportional to a second derivative of the total
energy Ee. F ij / q2Ee=qqiqqj ¼ ðm

�1=2
1 m

�1=2
2 Þq2Ee=qqiqqj ,

where qi and qj are spatial coordinates and m1 and m2 are
the corresponding atomic masses. For Rh2O3 I, which has
10 atoms in the primitive unit cell, F has dimension 30� 30.
Taking advantage of the fact that F is symmetric about the
diagonal, ð302 þ 30Þ=2 ¼ 465 second derivatives of the total
energy must be computed. For Rh2O3 II, which has a 20-
atom unit cell, the number of unique F matrix elements is
(602+60)/2 ¼ 1830 and for Rh2O3 III the number is
(1202+120)/2 ¼ 7260. Moreover, if full diagonalization of
F is carried out for III, to properly compare Evib and Svib

between phases, we must use the z ¼ 8 supercell for I and
for II also. The above discussion neglects volume depen-
dence. If we want to include volume dependence, we would
need to construct each F at several volumes, resulting in
numerous F matrices each with dimensions 120� 120, a
computationally prohibitive calculation.

It seems reasonable to conclude that the highest
frequencies resulting from the LH approximation are
reliable, but the low frequencies are not reliable because
of the neglect of coupling and because the smallest possible
unit cells were used. We turn to Ref. [13], which reports
infrared (IR) spectra below 700 cm�1 for Rh2O3 I, II and
III. We can use this experimental data to carry out an
empirical correction to the LH approximation (ECLH).
Since Ref. [13] tabulates four or more low frequencies for
each polymorph, we may replace the lowest four frequen-
cies found with the LH model by the lowest four
experimental frequencies. (We normalize to the Rh2O3

formula unit so that 4/15 of the frequencies are replaced for
each phase.) In other words, the four lowest theoretical
frequencies (presumably the least reliable theoretical
frequencies owing to the neglect of coupling in the LH
approximation) are dropped and replaced with experi-
mental data. Replacing the low frequencies will have very
little effect on the zero point energy, since it is dominated
by high frequencies. The P–T diagram at low T will change
very little. At high T, the P–T diagram will change
appreciably because low frequencies contribute heavily to
TSvib. Fig. 5 shows the P–T phase diagram resulting from
the ECLH approximation.

As shown in Fig. 5, the ECLH calculation gives a high
temperature, low-pressure region of stability for the Rh2O3

III form, which is in agreement with the experimental result
that the corundum structure Rh2O3 I transforms irrever-
sibly to Rh2O3 III when heated between 750 and 1000 1C in
the air [6]. As expected, the P–T diagram at low T changes
very little from that obtained with the LH model, which
confirms that Rh2O3 I is the low-pressure, low-temperature
form and Rh2O3 II remains a high-pressure form. We
presume that the P–T diagram is only qualitatively
corrected by the empirical frequency data, which predicts
that Rh2O3 III is favored at high temperature and becomes
the majority phase. To more accurately and quantitatively
map the region of stability for the Rh2O3 III phase, we
should go beyond the LH approximation completely,
which will not be considered in this paper owing to the
aforementioned prohibitive computational expense. The
present calculations, however, do show clearly that the
Rh2O3 III phase is intermediate between Rh2O3 I and
Rh2O3 II and is stabilized by vibrational entropy.

4. Summary

Using first-principles total energy calculations, we have
investigated the structures and relative phase stability of
the three rhodium sesquioxides Rh2O3 (I, II, III). The P–T

phase diagram when constructed with the LH approxima-
tion identifies regions of thermodynamic stability for the
Rh2O3 I and Rh2O3 II phases, and shows that Rh2O3 I is a
low-temperature, low-pressure form while Rh2O3 II phase
is a high-pressure phase. Using the LH approximation,
Rh2O3 III is never thermodynamically favored in the P, T

region studied here. We then analyze why low-frequency
vibrational modes are less reliably predicted than high
frequency modes when using the LH approximation. An
ECLH approximation is introduced in which the less
reliable low-frequencies from the LH approximation are
replaced with experimental data. The ECLH calculation
produces a region of stability at high-temperature and low-
pressure for the Rh2O3 III form. The G(T, P) results yield
qualitative relative phase stabilities that are in agreement
with inferences about the regions of stability from previous
experimental reports and demonstrate that Rh2O3 III is
entropically stabilized. We anticipate that this new insight
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into the Rh(III) oxides will be helpful to understand the
role of these oxides in processes on supported rhodium
catalysts.
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